Approximation algorithms from inexact solutions to semidefinite programming relaxations of combinatorial optimization problems

نویسندگان

  • Timothy Lee
  • John E. Mitchell
چکیده

Semidefinite relaxations of certain combinatorial optimization problems lead to approximation algorithms with performance guarantees. For large-scale problems, it may not be computationally feasible to solve the semidefinite relaxations to optimality. In this paper, we investigate the effect on the performance guarantees of an approximate solution to the semidefinite relaxation for MaxCut, Max2Sat, and Max3Sat. We show that it is possible to make simple modifications to the approximate solutions and obtain performance guarantees that depend linearly on the most negative eigenvalue of the approximate solution, the size of the problem, and the duality gap. In every case, we recover the original performance guarantees in the limit as the solution approaches the optimal solution to the semidefinite relaxation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Csc5160: Combinatorial Optimization and Approximation Algorithms Topic: Semidefinite Programming 22.1 Semidefinite Programming Problem

In this lecture, we provide another class of relaxations, called Semidefinite Programming Relaxation. These serve as relaxations for several NP-hard problems, in particular, for problems that can be expressed as strict quadratic programs. The relaxed problems, together with techniques like randomized rounding, give good approximation algorithms to hard combinatorial problems. We will illustrate...

متن کامل

Convex Relaxations and Integrality Gaps

We discuss the effectiveness of linear and semidefinite relaxations in approximating the optimum for combinatorial optimization problems. Various hierarchies of these relaxations, such as the ones defined by Lovász and Schrijver [47], Sherali and Adams [55] and Lasserre [42] generate increasingly strong linear and semidefinite programming relaxations starting from a basic one. We survey some po...

متن کامل

Interior Point and Semidefinite Approaches in Combinatorial Optimization

Conic programming, especially semidefinite programming (SDP), has been regarded as linear programming for the 21st century. This tremendous excitement was spurred in part by a variety of applications of SDP in integer programming (IP) and combinatorial optimization, and the development of efficient primal-dual interior-point methods (IPMs) and various first order approaches for the solution of ...

متن کامل

1 Parallel Semidefinite Programming and Combinatorial Optimization STEVEN

The use of semidefinite programming in combinatorial optimization continues to grow. This growth can be attributed to at least three factors: new semidefinite relaxations that provide tractable bounds to hard combinatorial problems, algorithmic advances in the solution of semidefinite programs (SDP), and the emergence of parallel computing. Solution techniques for minimizing combinatorial probl...

متن کامل

New Directions in Approximation Algorithms and Hardness of Approximation

Combinatorial optimization encompasses a wide range of important computational tasks such as UNIFORMSPARSESTCUT (also known as NORMALIZEDCUT), MAXCUT, TRAVELINGSALESMANPROBLEM, and VERTEXCOVER. Most combinatorial optimization problems are NP-hard to be solved optimally. On one hand, a natural way to cope with this computational intractability is via designing approximation algorithms to efficie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Optimization

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017